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Abstract

An alternative and rigorous formulation of electromagnetic scattering -
the Delta Boundary Operator (DBO) technique - has been reported in the
literature. Use of a simple approximation allows fast and accurate calcula-
tions of scattering by rough planar surfaces. Here an investigation of the
wider applicability of approximate DBO techniques is pursued. Attention is
focussed on scattering by simple smooth bodies in the so-called resonance re-
gion, where the approximations of high frequency asymptotic techniques are
often inadequate. It is shown that application of approximate DBO meth-
ods leads to predictions of non-vanishing surface currents in unlit regions and
smooth transition currents at shadow boundaries.

Copyright

ControUer
HMSO London



INTENTIONALLY BLANK



Contents

1 Introduction 1

2 Principles of the Rigorous DBO Technique 2
2.1 Scattering by an infinite perfectly conducting plane ............. 4
2.2 Scattering by a perfectly conducting circular cylinaer ............ 5

3 Principles of the Approximate DBO (ADBO) Technique 7

4 Application of ADBO Theory to Scattering by a Circular Cylinder 10

5 Analysis of the s-Distribution of the Circular Cylinder 14

6 Application of IDBO Theory to Scattering by a Circular Cylinder 18

7 Prescription of the IDBO Technique for a General Two-Dimensional
Smooth Scatterer 21

8 Conclusions and Suggestions for Further Work 23

9 References 25

A Analysis of the Integral I(0, ka) 27
A.1 Stationary Phase Point Contributions ...................... 28
A.2 End-Point Contributions .............................. 30

B Asymptotic (ka , 1) Analysis of i c(s,0) 33

C Analysis of the Integral MA,(9, ka) 37
C.1 Saddle Point Contributions ............................. 37
C.2 End-Point Contributions ............................... 38

D Contribution of c(2)(s,0) to the Cylinder Current 39

Acoesion For

NTIS3;A

4 \ Djiir

i I I I I I I I I I I I I I



INTENTIONALLY BLANK



1 Introduction

Electromagnetic scattering by bodies up to a few wavelengths in size can be calcu-
lated using wire grid or surface patch modelling in conjunction with the method of
moment:z. High frequency techniques such as the Geometrical Theory of Diffraction
(GTD) or Physical Optics (PO) supplemented by a form of the Physical Theory of
Diffraction (PTD) can often be successfully applied to larger objects. However with
complex scatterers there is often an intermediate region where the computational
requirements of moment method calculations are too great and where the approxi-
mations of the high frequency asymptotic techniques are inadequate. Scattering by
bodies of this size is a topic currently attracting a great deal of interest.

An alternative and rigorous formulation of electromagnetic scattering - called
the Delta Boundary Operator (DBO) technique - has been reported by Maystre [1]
and by Saillard, Roger and Maystre [2]. Central to this scheme is the solution of an
abstract boundary value problem from which the solution of a physical scattering
problem can be derived. It has been shown [3,4] that a simple approximation to
the solution of the intermediate problem allows fast and accurate calculations of
scattering by rough planar surfaces where the scale of the roughness is of the order
of the wavelength of the incident radiation. In particular the solutions are more
accurate than those obtained by using Beckmann's method [5,6], a high frequency
technique which uses the Kirchoff approximation. In this paper an investigation
of the wider applicability of approximate DBO techniques is pursued. Attention is
focussed on scattering by simple smooth bodies. Emphasis is given to scattering by
objects in the resonance region and comparison is made with the PO technique.

In Section 2 the principles of the rigorous DBO formulation are outlined and
illustrated with simple examples. A simple approximate DBO (ADBO) theory is
developed in Section 3 and this is applied to plane wave scattering by a conducting
circular cylinder in Section 4. Some refinement is seen to be necessary for accurate
current and radar cross section (RCS) predictions and an improved DBO (IDBO)
procedure is proposed in Section 5. This is tested by application to the circular
cylinder problem in Section 6 and is prescribed for a general smooth two-dimensional
(2D) scatterer in Section 7. Section 8 includes suggestions for further validation and
development of the IDBO scheme.



2 Principles of the Rigorous DBO Technique

This section draws heavily on the work of Maystre [1]. It is included to establish
notation and to faniharise the reader with the nature of the method.

Consider the scattering of a plane electromagnetic wave incident normally upon
an infinitely long cylindrical body situated in free space, as shown in Fig.1. The
z-axis is chosen to be parallel to the axis of the cylinder. A general point on the
surface contour C will have arc length s from a reference point P.

The body will be assumed to be perfectly conducting. The incident radiation
is assumed time-harmonic. All fields will then exhibit the same time dependence,
chosen to be e- t , which will be suppressed throughout. We confine the analysis to
the case where the incident electric field is z-polarised. (This case is also commonly
referred to as E-polarisation or TM-polarisation.) Then the total electric field ev-
erywhere has a non-zero z-component only. At a point external to the scatterer with
position vector r this is given by

E(_) = E'(t) + E'(z), (I)

where E'(r) and E(r) denote the incident and scattered fields respectively. The
scattered field satisfies the Helmholtz equation

(V' + k2 )E3(r) = 0, (2)

where k' = w2pofo and yo and co are respectively the permeability and permittivity
of free space. In addition the scattered field is subject to the boundary condition

Es lc = -E' Ic (3)

on the surface C and to the far-zone Sommerfeld radiation condition.

The above completely specifies a physical electromagnetic scattering problem
and in principle a unique solution for the electric field may be obtained. Often the
surface current density J(s) is determined first. The scattered field outside the body
is then calculated by means of the Helmholtz representation

E(-)= - G(r, L')](r')ds', (4)

where r' = r'(s') is the position vector of a general point on the contour C, j =

-IwpoJ represents a normalised current density and the two-dimensional Green's
function is given by

G ) H (')(klr- r1'). (5)
4 0

Now consider the following abstract problem - called the delta boundary opera-
tor (DBO) problem by Maystre. A fictitious source outside the scatterer is ass'rned
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to be such that it gives rise to an incident field U of unit amplitude at a point s = so
on the surface of the body and which vanishes elsewhere on C; i.e.

U; Ic = b(s - so). (6)

(See Fig.2.) The presence of the scattering object causes a scattered field Us which
satisfies the following conditions :

(V 2 + k2)U'(r.) = 0 outside C (7)

u Ic = -6(s - so). (8)

In addition the scattered far-field must obey the appropriate radiation condition.
The DBO problem, as stated here, is simply a mathematical boundary value prob-
lem. A unique solution for the scattered field is possible in principle.

Maystre defines a so-called t-distribution for the DBO problem which is analo-
gous to the current j of the physical problem:

aUs
'(s, so) - - (s,so). (9)

O~n

The solution of the physical scattering problem may be obtained from that of the
DBO problem by means of the prinr;,p, 'superposition. The required superposition
is found by inspection of the bounda: conditions (3) and (8) and by use of the
relation

E'(s) = C 6(s - so)E'(s0)dso. (10)

For example, the scattered field on the surface of the scatterer is given bv

E f(s) = 1C U(s,so)E'(so)dso = -E'(s) (11)

as required. Similarly the current j(s) is given by
OE'(

n(s) = -(s) +I 1k(s,so)E (so)dso. (12)

Thus the physical scattering problem may be solved by first solving the associated
DBO problem to obtain the 0-distribution.

It is important to appreciate that the rigorous DBO method of solution of a scat-
tering problem offers nothing more than an alternative analysis. It is not anticipated
that application of the method will lead to new exact analytic results for previously
unsolved problems. As will become clear in Section 3 the value of this approach
is that it suggests approximate techniques which are expected to be both fast and
accurate for many scattering problems. With this in mind we now demonstrate the
DBO method by applying it to two simple problems with known solutions.
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2.1 Scattering by an infinite perfectly conducting plane

The plane is taken to be coincident with the y = 0 plane. We consider radiation in
the region y > 0. The DBO problem is specified as follows

(V 2 +k 2)U'(z,y)=O fory>0 (13)

U'(X, 0) = -6(x- X0) (14)

U'(x,y) satisfies a radiation condition as y - +oc. (15)

To obtain a solution we express Us as a Fourier integral

US(X, y) = J "'(y, h)Cihxdh. (16)

Substitution into the Hlelmholtz equation gives

d2V1
-- +(k2 -h 2 )V=0 fory>0. (17)
dy2

The solution for V which ensures compliance with the radiation condition is

V(y, h) = V(o, h) -hk), (is)

with

{(h, k) (h2 - k2)1/2 for Ihj > k (19)
-i(k 2 - 1) for Ihi < k.

By using the relation

6(X - XO) ]_ (r_ rodh (20)

imposition of the boundary condition (14) gives

V(o,h) 2 . (21)

1U(X, Y) = - I elh(x-zo)_j(h -k)ydh. (22)

In particular the V,-distribution for this problem (denoted CP) is given by

t'V(X, Xo) (- (, 0) k .. J (h, k)eth(r-z)dh. (23)

Manipulations with the Fourier transforms of Hankel functions allow closed form
evaluation of this integral [1,71. We find

= ik H(')(k(x - ro)) (24)
2 (X - o)
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Observe that tbP(x, x0 ) depends only on z - xo, a consequence of the translation
invariance of the scatterer. For a general cylindrical body Maystre [1] has shown
that the t-distribution is a symmetric function; i.e.

4'(s,so) = 0(so,s). (25)

This is a manifestation of the reciprocity principle.

Now consider the problem of scattering of a plane wave incident in the x - y
plane at an angle a to the surface normal. We have

E'(x, y) = ei k (Xsin - cos a) (26)

Then the current is found from ( 2) to be

) sin -cok ikf_ H,(k(x - xo)) eikosin dx
j(x) = - ik cos t e' - i- J e dx

= -2ikcosa e ik in
a
,  (27)

in accord with the well-known solution. Here use has been made of the Fourier
transform of the Hankel function :

es rx= 2i I(h, k-). (28)
J-01 x2

2.2 Scattering by a perfectly conducting circular cylinder

The circular symmetry of this scatterer implies a (-distribution 7;Y(s, so) dependent
only on s - so. Without loss of generality we may thus set so to zero and determine
1,c(s, 0).

For a cyhnder of radius a, s = aO and the DBO problem may therefore be stated
as follows

(V2+ k2)Us(r, 0 ) = 0 for r > a (29)

U'(a,O) = -6(0)/a (30)

U(r,0) satisfies a radiation condition as r - . (31)

A straightforward calculation [1] produces the result

k H ''(k a ) ,,n,/ a
V/,C(s, 0) =- - C (32)

27 a ,= - , H ,)(ka ) "

For a plane wave incident from the +x-direction (see Fig.3)

E'(r. 0 = C- Ikr cos (33)
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and (12) gives the surface current

(a 0) = -'(a, 0) + a]1 ?'a 0, a Oo)EP(a, Oo) d00  (34)

By expressing E' as a Fourier series:

E' (r, 0) = Z (-')'J,,(kr)e' in (35)

it can be readily verified that

jkaO) = -- E jf (6kan=__, Hn")(ka)

Thus the classical solution is repro)duced. (See, for example, iRef.8.)

6



3 Principles of the Approximate DBO (ADBO)
Technique

Maystre [1] has performed analytical and numerical studies of the functions V/ c(s, 0)
and OP(s,0) = (-ik/2s)H(')(ks). His main observations are listed below:

1. Ob(s, 0) and Oc(s, 0) exhibit identical singularities as s .- + 0. (Note however
that V/c(s, 0) is a 27ra-periodic function and so is singular as s -+ 2mnra, where
m is an integer. We limit comparison to the region kjsj < 7rka.)

2. V(s, O) -4 tk(s, 0) as ka oo .

3. Provided ka Z 2, ,'¢(s, 0) O P'(s, 0) for kisl £ 7rka.

4. Values of both the real and imaginary parts of P(s, 0) become negligible for
kisl Z 27r.

5. Values of both the real and imaginary parts of ,c(s,0) become negligible for

kisi Z 27r provided ka Z- 2.

Recalling the relationship (12) between the 4,-distribution and the surface current,
observations 4 and 5 suggest the following fundamental conclusion [1,3] for TM
incidence on a general 2D scatterer: The surface current at any point on the body
is influenced by the shape of the scatterer within a distance along the surface of
approximately a wavelength. This phenomenon of short-range coupling is excluded
from the more popular Physical Optics (PO) theory which gives rise to surface
currents which depend only on the local slope of the surface.

The observed similarities between the distributions ,;(s, 0) and 4C(s, 0) (for
ka Z 2) suggest an approximate analysis of scattering by a general 2D body which
accounts for the effects of short-range coupling. For a scatterer of perimeter l it seems
reasonable to expect (and assume) that the true i4,-distribution 4,(s, So) (which will
be an I-periodic function in both s and so) can be accurately represented by the func-
tion t4P(s, So) when Is - sol < 1/2. This we shall call the approximate DBO (ADBO)
approach. Underlying this assumption are two quite separate approximations:

1. It is assumed that Vb(s,so) depends on the variables s and so solely through
their difference s - so; i.e. we assume i,(s, so) - 4'(s - so, 0). This is certainly
justifiable for bodies with surfaces which are small perturbations on a plane or
circular cylinder but the validity of its wider applicability is uncertain.

2. It is assumed that ,!,(s - so, O) - OP(s - so, O) = ;bp(s, so) for Is -- sol < 1/2.
In view of observations 1 and 3 on the 4-distribution of the circular cylinder.
it seems reasonable to anticipate that this approximation will introduce little
error provided the scatterer is smooth (i.e. edges are absent) and is not too
small; i.e. 1 4 2A\ or kl Z 41r. (.A = 27r/k denotes the wavelength of the exciting
radiation.)
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The assumption of a symmetric V-distribution ensures that fields obtained using
this approximate technique obey the reciprocity principle. (See Section 2.) It is
worth noting, though, that approximate solutions satisfying reciprocity may not be
any more accurate than non-reciprocal ones [9].

Since O(s, so) is I-periodic in So (and s), (12) gives

i(s) = n +(s) -12 0(s, so)E'(so)dso. (37)

Now, invoking approximation 1 above, we write

j(s) z (s)+ 1+/2 O(s- so,0)E'(so)dso

(s)" ± / J , (s', 0) E' (s' + s) ds'. (38)anE ( s) +L/

Implementation of approximation 2 then gives

j(s) --JADBO(S) =- (S + -1/2 P i(s', 0)E'(s' + s)ds'. (39)

Recalling that Ob(s,0) is numerically negligible for Isl Z' A (observation 4) we see
-hat little loss of accuracy will ensue by changing the integration limits to ±o; i.e.

E" () + OP(s', O)EI(s ' + s)ds'. (40)

This further approximation is expected to be valid provided I Z 2A.

The replacement of the true VI-distribution by its counterpart for the plane may
be viewed as an infinite plane approximation. PO uses an infinite tangent plane
approximation to determine the current locally and the shape of the scatterer is
accounted for when integrating the current to find the RCS. However, in the ADBO
technique the infinite plane approximation is used one stage earlier, allowing the
current to be influenced by the geometry of the scatterer in the nearby region.

It seems reasonable to expect (40) to be an accurate representation of reduced
surface current on many 2D scatterers. Furthermore the current is expressed as
a convolution-type integral which can be performed using Fourier transform tech-
niques. Rapid calculation of currents can therefore be achieved by means of fast
Fourier transform (FFT) algorithms. Since the Fourier transform of VYP is calcula-
ble analytically (see (28)) this procedure also alleviates problems which would be
encountered in the direct numerical evaluation of the integral due to the singular
behaviour of OP.

In Refs.3 and 4 this approximate technique has been applied to scattering by
planar rough surfaces. In the resonance region, where the roughness dimensions and
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the wavelength of the incident radiation are of the same order of magnitude, the
results were consistently more accurate than those obtained by using the Beckmann
method [5,6], which strictly is applicable only when the wavelength is small relative
to the scale of roughness. In Section 4 the application of the ADBO method to a
simple smooth scatterer - the circular cylinder - is investigated in detail.

9



4 Application of ADBO Theory to Scattering by
a Circular Cylinder

The scattering of a TM-polarised plane wave by a perfectly conducting circular
cylinder has been examined rigorously in Section 2. Here the problem is revisited
using the ADBO theory. From the arguments of the previous section we expect
reasonable accuracy for ka Z 2. From (39) we find

jADBO(O) - -ik cos 0e - kacosO - ifk 1,(0 , ka), (41)
2

with

IA(O, ka) = 0 ' , e ikacas(+O)dO/. (42)

As a first attempt at an analysis of the current we invoke the additional approxi-
mation I,(0, ka) ;zz I(0, ka) in accordance with (40). For an approximate analytic
evaluation of the integral I, consider the following argument. From observation 4
of Section 3 we see that the distribution H(1)(kaO')/O' is numerically significant only
when [0'f < 27r/ka. In view of this we are able to replace e - kacos(e'+e) by its small
10'l approximation (strictly valid for l0'I < 1) when ka > 27r. Thus

ka>21r -:kacosO - H~l)(ka9')
1 (O, ka) k Zz e- f o 0 1 H ' eikaO'sin0dO,

S21 cos Ole -ik cos0, (43)

where use has been made of the standard integral (28). Therefore, when ka > 27r,

r -2ikcosOe - ik c sI for 0< 101 < 7r/2
jDBo(O) 0 for 7r/2 < 01r (44)

These expressions for the reduced current on a conducting cylinder are precisely
those predicted by PO theory. However, a more rigorous analysis of I, is possible
and is given in Appendix A. There it is found that

I,(0, ka) ka,1,csOO 21cosOle_,k..os (I + 2kacos3O

+I'(O, ka) + 1P(O, ka) (45)

where (23 2 e3i /4eiwkacikac° Os

I'(0, ka) = )3/2 i7rcos8 (46)7r ia7" 2 
COS 2 

0

and

I,P(O, ka) =o U(101 - 7r/2) (-3)/2 ( 2)" 3 Ai(O)c3,,/4

i ~ka(37r/2- 101) ika (!B-r/2)
(3 2 11 _'+ (47)

S(3</2 - 1-3/2 + (101 r/2)3/ /

10



U(x) denotes the unit step function and Ai(x) represents the Airy function. There-
fore the ADBO theory gives the following expressions for the current on a circular
cylinder:

-2ikcos Oe- ikcos (I + 4ko-3G )

1,O-+ (0,ka) for 0 < 101 < 7r/2ka>I~,cos 0960 2 ir I

jADBO(O) . (48)
-2ik cos Oeika Cos (4kat53 )

1 ((0, ka) + l1P(O, ka)) for 7r/2 < 101 <

In accordance with (44) PO currents are recovered in the high frequency (ka -+ oc)
limit. These results are valid provided ka > 1 and cos 0 6 0. Therefore we have
been unable to derive a simple analytic form for the current in the transition region
101 z r/2. Outside the shadow boundary region we have obtained expressions for
correction terms to the PO currents which account for the effects of the nearby
scatterer shape. It is of interest to compare (48) with the corresponding asymptotic
form of the exact current jEx(O) [10]:

-2ik cos Oe- ika cor, ( + ikacos
3

k(9 kac1.osoo -ike 6 (r/ (_) = '- (2.) for 0 < 101 < r/2jEx (0) a nf)

(2.) 1/3 F e,, n(Il- )+eun
( 3w/ 2 - e fo)) r - 10210 7r

-ike"/ (k ) n-:= a,- )( - . . for 7r/2 < 10 _

(49)
The infinite series represent creeping wave contributions. We see that the curvature
correction term in the illuminated region predicted by the ADBO method is of
the correct form and so breaks down in similar circumstances to JEx(O). However
its magnitude is half the true value. Note also that I,,P(O, ka) clearly represents a
creeping wave contribution to the ADBO current.

To check the validity of the analytic approximation (48) away from the vicinity
of the shadow boundary a numerical evaluation of I, is necessary. This can be
accomplished only after careful treatment of the singularity at 0' = 0. The details
are discussed in Appendix A. I,,(0, ka) has been evaluated using (83). Alternatively,
and as discussed at the beginning of this section, calculation of I,(0, ka) can proceed
approximately through evaluation of I(0, ka). (It is shown in Appendix A.1 that
the difference I(O, ka) - I,(0, ka) is of order 0(1/ka)3/ 2 and therefore small relative
to either I, or 1, when ka > 1.) The integral I, has been evaluated numerically
in three different ways:

11



1. Through computation of the expression equivalent to (83) for IA(O, ka):

IA(O, ka) = - HIl)(kaA)(e - ikac s (A+O) + e- i kacos(A-O))

- iH~o()(kaA)(sin(A + 9)e - ikcos(A+O) + sin(A - O)e- i kacos(A- ))

+ il 141)(kaOt)eikas(6'+9) cos(' + 0)(1 - ika cos(' + 0))d0'.

(50)

Values of I.. have been obtained by examining IA for convergence for large A.

2. By using Fourier transform techniques (since 1I,(9, ka) is a convolution type
integral). The equivalent results are obtained directly by means of Fourier
series. Upon using the identity (35) we find

00 (1(0, k ai H,) kaO') i',o IO

I0(E, ka) = (-i)1J' (ka)-"] e'-d
n-00 0

2' 00

'2 E (- i '-"( n, ka)J, ( ka )C- ' ° , (
k a = ,

where the standard integral (28) has been used. Summation of this series has
been performed by rewriting it as

1,,(9, ka) = 2i 0 C'(i)'y(n'ka)J"(ka) cos nO, (52)
n=O

(Co = 1, I1 = E2 = = 2) and retaining sufficient terms in the sum to ensure
convergence.

3. By using an FFT algorithm.

The results obtained by these three methods differ negligibly.

Plots of the variation of the magnitude and phase of the surface current with angle
0, as given by (41), are shown in Fig.4 for ka = 5 and ka = 10. Also shown are the
results with I, replaced by '00 and the analytic form (48) of the currents. As expected
invoking the extra approximation I, Z I. introduces little error (particularly for
large ka). It is clear also that (48) is indeed a valid representation of the ADBO
cylinder current in the deep illuminated and deep shadow regions.

In Fig.5 the magnitude and phase of the cylinder current obtained using the
ADBO technique (by numerical evaluation of I,) are compared with the correspond-
ing exact [10] and PO solutions. In geieral the ADBO currents compare favourably
with the PO results. Unlike PO, application of the ADBO method leads to pre-
dictions of non-vanishing surface currents in unlit regions and smooth transition
currents at shadow boundaries. However the ADBO currents display an erroneous
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oscillatory variation with angle for 0 >Z 7r/2 and their magnitudes are over-estimated
in the deep shadow region.

We now turn to a determination of the scattered far-field (and hence the radar
cross section RCS)) using the ADBO technique. This is achieved by integration of

the current around the contour of the scatterer as indicated in (4). For the case of
the circular cylinder the scattered far-field is found to be

E'(r,O) k ia e(k_,,/4) 0 j( ,)ekcos(O' O)dO,. (53)

Since we have been unable to derive a reliable analytic expression for the ADBO

current at all points on the surface we revert to the form (41). Inserting into (53)
and interchanging the order of integration in the second term gives

E'(r, 9) - rka e,(k I4){_2i cos(O/2)J1 (2ka cos(9/2)) + L,(O, ka)}, (54)/8r kr

where

LA(0,ka) = IA H ' o (2kacos 2 ))o . (55)

The bistatic RCS a(O) is defined as

a(0) r= li 2 -rr Es(r, 0) 2 (56)

ADBO predictions of bistatic RCS are shown in Fig.6 for cylinders of size ka = 5

and ka = 10. Also shown are the corresponding exact [8] and PO results. As with

I, care has been taken with the singularity of the integrand for the numerical evalu-

ation of L,. There is evidence that the over-estimated currents in the deep shadow
region contribute significantly to the RCS, with their erroneous oscillatory angu-

lar behaviour persisting after integration. It is debatable whether application of the
ADBO technique to the circular cylinder scattering problem has led to improvements
over the PO RCS predictions.

Iii view of this disappointing conclusion it is natural to ask how the ADBO

scheme might be modified .o improve its accuracy. The two basic assumptions

inherent in the technique were given in Section 3. It has already been remarked that

the O-distribution for the cylinder Oc(s, so) depends only on s - so ; i.e. tIc(s, so) =
Oc(s - so, 0). Thus only the second approximation was used in the cylinder analysis;

i.e. we assumed ;b(s, 0) :- ObP(s, 0) for Is ! 7ra. Although observation 3 of Section
3 supports this assumption it is clear that it is inadequate for the cases we have

considered (ka = 5 and ka = 10). It seems likely that a better approximation to
V(s,0) will lead to improved current and RCS predictions. Therefore in Section 5
we examine in detail the O-distribution of the circular cylinder.

13



5 Analysis of the 4-Distribution of the Circular
Cylinder

In this section we seek an improved approximation for 0c(s, 0). Since OC(s, 0) -*

OP(s,0) as ka --+ oo (observation 2 of Section 3) we look for correction terms by
examining the asymptotic behaviour of the exact expression (32). By using a Watson
transformation (see Appendix B) we find

¢,(s,0) k ,>1 i e) - ik J + o(')(S, 0), (57)
4a

where
0c(2)(S 0) =ik E E (eiLd2m7r+) +ivw(2mir-)) (58)

n=I m=1

with 0 ~(59)
a

V,,(2)(s, 0) represents creeping wave contributions. For each value of n (corresponding

to a root v, of H(,)(ka) = 0) there is an infinite number of such terms, each integral
change in m corresponding to a complete circulation of the cylinder. However,
careful inspection shows that not all of the expected creeping wave terms are present.
Recalling that 101 < 7r we see in particular that all waves emanating from the point
of excitation on the surface and traversing less than half the cylinder circumference
are excluded. Indeed bc( 2 )(s,0) offers a complete representation of creeping waves
only when 0 = 0. The imaginary parts of the v, determine the rates at which
the creeping waves are attenuated as they move around the cylinder. From (135),
Im(vn) oc (ka)'/ 3 and so for large ka there is considerable attenuation. Bearing
in mind the remarks made above it follows that the most significant creeping wave
contributions are excluded from cP(2)(s, 0). Indeed, even for moderate values of ka
it is readily verified using (135) and tables of the constants a,, (see, for example,
Ref.11) that

Iewn,(2mwr+O)l IiLv( 2mw-O)I < 10-4. (60)
for all allowed values of m and n. It is immediately apparent that the contribution
of V( 2 )(s, 0) to Oc(s, 0) is relatively small and indeed numerically negligible. Thus
in our numerical investigation of (57) we will ignore the contribution of 4c()(s,0).

We must however anticipate that the issue of the 'missing' creeping waves is an
important one since their numerical contributions may be significant. This matter
will be discussed again later in this section.

The validity of (57) and the significance of the curvature correction term can be
determined by numerical comparison with the exact form (32) and the plane approx-
imation OP(s,0). Maystre [11 has rewritten (32) in a form suitable for computation:
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2r10(S0) 
- 101) sin 101

T2 2(ka)2sin 2 (0/2) 2

+ cos01nlIsin(0/2)+ I H(1)(ka) 2 Ho(')(ka) Cos0
ka Hto)(k a) ka H(')(ka)

H EH)2(ka) c nO. (61)
1= n- Hn(')(ka)

The infinite series converges rapidly. As before 0 = s/a and 101 < 7r. Plots of the real
and imaginary parts of Oc(s, 0) are given in Fig.7 for the cases ka = 5 and ka = 10.
Also shown is the plane approximation OP(s, 0) and the approximation to oC(s, 0)
given by (57). Two remarks are appropriate:

1. The discrepancies between OP(s, 0) and the exact form (61) of ;kc(s, 0) are suffi-
ciently large to support our conclusion that the ADBO procedure is inadequate
for accurate current and RCS predictions.

2. The inclusion of the curvature correction leads to a significant improvement to
our appioximation to ikc(s, 0) only for kIsI < 1.

It is apparent from Fig.7 that the representation (57) of Oc(s,0) fails for kjsj Z> 1.
This is because the magnitude of the curvature correction does not decrease with
increasing kIsI. It is this term which dominates for klsI > 1 giving rise to the
observed oscillatory behaviour. Clearly for a more accurate representation of Vyc(s, 0)
this correction term must be strongly damped as kIsI is increased. The origin of
the absent attenuation is alluded to in Appendix B. There it is noted that the
approximation (132) to f(v, ka) = H0)'(ka)/H,7)(ka) (used to determine (57)) does
not have the correct pole structure. Nevertheless (132) is a good approximation to
f(v, ka) provided IvI -A ka. In particular it is valid when Ivl > ka. That this is so
is borne out by the accuracy of the representation (57) of Vc(s, 0) for kIsi < 1, since
the variables I and ks form a Fourier transform pair.

To obtain a more accurate model of oc(s,O) for klsI Z 1 we must invoke a
representation for f(v, ka) which has the correct behaviour when IvI _ ka. In
particular we require that f(v, ka) has poles at v = ±v,n (since, by (128), f(v, ka) =

f (-v, ka)). The residues associated with the poles at v = v, are given by
Ht l)'( ka )

lim (v - v,,)f(v, ka) =
V,-H(,, ka) I

ka>I
:l1 -1, (62)

by (153). Thus we write

I,,lkA) k .(v, ka) (1 1f (v, ka) _ ka _ E I, I
ka 1 _ +

n=15-V



_"(v, ka) 2  0 V, (63)
ka ( 63

Following similar arguments to those which lead to (138) we find that use of this
expression gives the following approximate representation of 4C(s, 0):

.. 1\ka).1 00

Os 0) + 2 0) i+± Z v
an= I

ka>1 ik 004'JeJ'°;.. b'(s, 0) + - ew" l61. (64)
a n

We expect this model to be reasonably accurate for kisi Z 1. Since Im(v,) > 0
and Im(vn,) cx (ka) 1'/3 the curvature correction term is strongly attenuated as kisi is
increased. Indeed, upon inspection of (58) and (64) it is apparent that this term rep-
resents the so-called 'missing' creeping waves referred to earlier in this section. They
are numerically significant since they traverse less than half the cylinder circumfer-
ence. Although we expect the representation (64) to be satisfactory for kisi > 1
it is clear that it breaks down for kisi < 1. Indeed, as Isl (or equivalently 191 )
approaches zero the imaginary part of the correction term blows up, a feature not
present in plots of the exact form of 0'(s, 0).

It is worth making a comment here on the analysis of ;bc(s, 0) given in Appendix
B. Although the split into two components 0,1(0) and 0,( 2 ) (through use of (130))
is mathematically convenient it is not unique and it does not lead to separation of
physically distinct contributions as it does in the analysis of the scattering of a plane
wave by a circular cylinder [11]. In particular creeping waves appear in the analysis
of both components. It is quite possible that a different split would be justifiable on
physical grounds.

So far in this section two simple representations ((57) and (64)) of the O-distribution
of the circular cylinder have been obtained. They have been shown to be valid for
different values of klsI. Ideally we would like a single expression accurate through-
out the interval 0 < kisi irka. Maystre [1] has given an empirical formula which
is able to represent 0c(s,0) to a very high degree of precision. It appears that
this was obtained by performing a seven parameter study using limited information
on the expected analytic form. As a result Maystre's formula is complicated and
may not be readily applicable to other smooth scatterers. The present author has
attempted a rigorous analysis of the exact form of Vc(s, 0) in a bid to discover a
simple and accurate representation. The fact that this approach failed to produce a
single usable form is directly traceable to the absence of an analytic expression for
the Fourier transform of H(,1)'(z)/H,1 )(z) (with respect to v) accurate for all real v
and z. Nevertheless, as we shall now demonstrate, it is possible to produce a very
good approximation to /,(s,0) for 0 < kisl < rka using a simple single parameter
model. This is achieved by making use of much of the information gleaned from the

16



rigorous analysis. Specifically, we postulate

P(s,0) 01 (S,0)- -C (65)
4a (5

with
vo = ka + ao(ka/2)l 3 eI '/3 . (66)

The correction term has been chosen to ensure accuracy for kisi = kalOl < 1 and
to represent the combined effect of the creeping waves traversing less than half the
cylinder circumference. When the parameter a0 takes the value 0.55, (65) is an
accurate representation for 0 < k~sl :_ 7rka. This is demonstrated in Fig.8 for
ka = 5 and ka = 10. Fine tuning of ao may lead to even better agreement with the
exact form. Computation of the cylinder current using (65) (which we shall call the
improved DBO (IDBO) approximation) is described in the next section.
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6 Application of IDBO Theory to Scattering by
a Circular Cylinder

The scattering of a TM-polarised plane wave by a perfectly conducting circular
cylinder has been examined rigorously in Section 2 and using ADBO theory in
Section 4. The currents obtained by applying the ADBO technique were found to
be inaccurate in the shadow region. Here the problem is revisited using the imp. wved
form of the O-distribution for the circular cylinder obtained in Section 5. From (38)
and (65) we find

jIDBO(0) = -ikcos Oe - ikacos - ik 1,(0, ka) - M ,(0, ka), (67)2 4

with
A

The integral M can be analysed using asymptotic techniques. (See Appendix C.)
It is found that

ka l,cos0;0 22voe - kacos -
MA,(, ka) (vo2 - (ka) 2 sin 2 0) + M'(O, ka) + M~r(O, ka). (69)

where

11'(0,ka) =- 2i .VoCL ,ka cos 0
(vM - (ka)2 sin2 9) (70)

and

9 2 )1/3 Ai(ooli/3)(e o( 7,1,2) + to(37 /2-I)). (71 ),I'(O, ka) - U(lOI-7rl2)2,r  - 2( oF,(s

Since vo z ka for ka > 1 and using also the result (48) for jADBo(O), it follows that

-21k cos cikacos ( + 2kco )

k It (0 ka) - LkM,,(O, ka) for 0 < 101 /2ka >l ,cos8# 2 4- 1-1 -2)
jIDBo(O)  -, (72)

-Tk(I,(0, ka) + I'(,k)
7r 7rt O frr/

-(M,(0, ka) + AIP(9, ka)) for 7r/2 < 101 7

Several comments are appropriate:

1. Comparing (72) with the asymptotic form of the exact current jEx(0) (49) we
see that IDBO theory yields the correct curvature correction to the PO current
in the illuminated region. Furthermore the erroneous curvature correction term
present in JADBo(O) for 7r/2 - 101 < 7 is precisely cancelled by a contribution
of similar form due to MA,(O, ka).
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2. The I P and M8 P terms together generate an approximate representation of
the most significant creeping wave contributions to the current on the shad-
owed side of the cylinder. In Section 5 it was observed that creeping waves
traversing more than half the cylinder circumference were severely attenuated
and gave ar insignificant numerical contribution to the DBO Ob-distribution.
Their contribution was therefore neglected. Thus no creeping wave terms are
present in the IDBO prediction of the current in the lit region. In Appendix
D it is confirmed that the correct creeping wave behaviour for 101 ' 7r/2 is
generated by retaining the term ,c()(s, 0) (58) in the approximate represen-
tation of t, (s, 0). Likewise all higher order creeping wave contributions to the
current in the shadow region are produced.

3. The I' and 'I terms are present because the approximation (65) provides
an inadequate model of Ic(s,0) for s ±7ra. This is not a serious concerr
because even for moderate ka they are numerically very small.

It has already been confirmed in Section 4 that the substitution of I,, for I, in
(41) makes little numerical difference. In a similar way, and in particular because
Irn(vo) > 0, we expect that the replacement of M, by ., in (67) will introduce
little error. Thus we write

k.>1 0ka cos 0  ik ik
jIDBO(O) -ikcos 1,(O. ka)- -M (0, ka) (73)

4

and we may employ FFT techniques for an efficient computation of I, and AI,. In
a combined evaluation of the second and third terms on the right side of (73) use
can be made of the analytic form for the Fourier transform of our approximation
(65) to ,C(s, 0):

j i.(aO.O)KO",'dO

ka>1 '"(.,kay k LIo
+ (74)

a 2a(v 2 - "

Note that, since Im(vo) > 0, the second term is not singular for real c. (Recalling
that (65) was derived in an attempt to approximate the Fourier transform of f (v, ka)
with respect to v we expect a better approximation to i-C ( ,') to be given by

-L -k t  ) (75),c( ,) ~ ~ H -f,, a=-H,(ka).

However, this result is likely to be less readily generalisable for application to an
arbitrary smooth scatterer.)

Plots of the magnitude and phase of the surface current, as given by (67). are
shown in Fig.9 for ka = 5 and ka = 10. The integrals I, and M, have been evaluated
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numerically. Also shown are the results obtaine. using (73) and the analytic form
(72). As expected invoking the extra approximations I, z Ioo and M, - Afc
introduces little error. It is also clear that (72) is indeeci a valid representation of
the cylinder current obtained using the IDBO technique away from the region of the
shadow boundary.

In Fig.10 the cylinder currents obtained by tk- IDBO method are compared with
the corresponding exact and PO solutions. In general the IDBO currents are much
more accurate than those of PO at all points on the cylinder surface. There is,
however, some residual erroneous oscillatory variation with angle in the shadowed
region.
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7 Prescription of the IDBO Technique for a Gen-
eral Two-Dimensional Smooth Scatterer

In Section 6 the IDBO method was successfully applied to the problem of plane wave
scattering by a perfectly conducting circular cylinder. This should not have surprised
us since the technique was based upon a derivation of an accurate approximation
to the known V-distribution for that scatterer. The technique can only be used to
advantage when its validity has been demonstrated for bodies for which the exact

-distribution is not known. Only then will the procedure yield a true predictive
capability.

The simple approximation (65) to ,'(s, 0) was developed with the aim of be-
ing readily generalisable for application to an arbitrary 2D smooth scatterer. We
therefore postulate the following form for the 4'-distribution of such a body:

IDBO(Si, S2) = "(Sl, S2) - Cks-21 e io/ 3e(, ' s)I1  (76)

4a(sl, s 2 )

where o0 = 0.55 and s1 and s 2 denote the arc lengths of points P and P2 on the
scatterer surface from some reference point also on that surface. This expression
is sufficiently general to allow dependence on both variables s, and s 2 rather than
just the single quantity s, s 2. We have yet to prescribe the functions a(sj,s 2)
and (sl,s 2). Any proposed ',:.rm fo: a(si,s 2) should reduce to the constant value
a for the case of a circular cylinder of radius a while I (sl,s2)1 should reduce to
(k/2a2 ) 31s1 - s21.

To obtain suitable expressions for a(sl, s2) and (s, s 2) we appeal to Fock theory.
In the application of Fock theory to a general convex body [11] it is seen that the
amplitude of the current in the shadow region depends only on the radii of curvature
of the surface at the point of excitation (Pi say) of the creeping wave and at the
point of observation (P 2 ) and also on the quantity

i )1/3

2a,,l ds', (77)

where a(s) is the radius of curvature as a function of arc length. Thus, in order also
to preserve symmetry under interchange of s, and s 2, we propose that

a(si,s 2 ) = Va(s1 )a(s 2), (78)

and a(s1 ,s 2) = j1,2 ( ))13 ds'. 
(79)

In accordance with (37) the IDBO prediction of the surface current induced by an
incident field E' on a closed body of perimeter I would be as follows:

__E_ [,+1/2

JIDBO(s) = --E, (S) + -+/2 , JDBo(s,s')E'(s')ds'. (80)
on /2
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The form of the 0-distribution given by (76),(78) and (79) has yet to be tested
for any scatterer other than the circular cylinder. Suitable test targets would be
the elliptic and parabolic cylinders for which control solutions are readily available.
(See, for example, Ref.12).

For a general smooth body a(si, s 2) and (sl, s 2) will be complicated functions
of both s, and s 2. Thus the contribution of the curvature correction term of OIDBO

to the current jIDBO will not be amenable to rapid approximate calculation using
FFT algorithms.

The prescribed forms (78) and (79) ensure that IkIDBO(Sl, S2) is symmetric and
so the fields calculated using the IDBO scheme are guaranteed to comply with the
reciprocity principle. (See [1] and Section 3.)
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8 Conclusions and Suggestions for Further Work

In the DBO formulation of the electromagnetic scattering problem the current is
expressed in the form of an integral over the scatterer surface with the integrand
containing a so-called O-distribution which is characteristic of the scatterer and de-
pends only on the polarisation of the incident radiation. The O-distribution gives the
current induced at a point on the scatterer surface due to a delta-function excitation
at a second such point. In this report two approximate techniques based on the
DBO formulation have been examined. These schemes aim to provide accurate rep-
resentations of the ip-distribution. A simple approximation (the ADBO procedure)
is to use the known a-distribution for the infinite plane. Although used success-
fully in the past to treat scattering by rough planar surfaces [3,4] we saw in Section
4 that it gives unsatisfactory predictions of current and bistatic RCS for circular
cylnders in the resonance region. In particular it includes only half of the known
curvature correction to the PO current in the illuminated region and over-estimates
tha magnitude of the shadow region currents. An improved approximation was de-
rived and applied to the circular cylinder problem. This IDBO scheme led to good
agreement with the known current everywhere on the cylinder. A generalisation of
the IDBO technique to allow treatment of scattering by arbitrary 2D smooth bodies
was proposed in Section 7.

In general the approximate DBO techniques have the following features:

1. Unlike PO their application leads to predictions of non-vanishing surface cur-
rents in unlit regions and smooth transition currents at shadow boundaries.

2. Unlike PO they yield currents which do not depend solely on the local georn-
etry of the scatterer; i.e. the currents are non-local. They make explicit the
phenomenon of short-range coupling, demonstrating that the surface current
at any point on the body is influenced by the shape of the scatterer within a
distance along the surface of about a wavelength.

3. A single expression gives the s'irface current everywhere on fhe body. This con-
trasts with Foc.s calculation of surface currents in the vicinity of the shadow
boundary [11]. Interpolation formulae are required to extend Fock's results
into the deep illumination region.

4. Provided that the assumed a-distribution is symmetric with respect to its
arguments the calculated fields will comply with the reciprocity principle.

5. They are more efficient than, for example, integral equation techniques because
the currents are given explicitly.

6. They are readily applicable for any incident field.

Any attempt to produce accurate current and field predictions using approximate
DBO techniques must be based upon a reliable representa.ion of the appropriate
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O-distribution. It seems likely that an accurate model of the O-distribution for a
general scatterer many wavelengths in size can be generated by gleaning information
from the t-distributions of a small number of standard (canonical) bodies. This is
the philosophy of the successful Geometrical Theory of Diffraction and is also the
reasoning behind the in-depth investigation of the t-distribution of the circular
cylinder in this paper. An IDBO treatment of scattering by bodies with edges
requires an examination of the t-distribution of an infinite wedge. This work is weil
advanced and will be reported in a future paper. An alternative approach would
be the approximate numerical computation of the t-distribution of an arbitrary
scatterer by disregarding the (usually insignificart) influence of distant parts of the
body.

In this paper we have been ccncerned only with the case of TM incidence on a
perfectly conducting infinite cylindrical body. Provided that the IDBO technique is
properly validated for this case it seems that further development of the technique
to allow tre,?"ment of TE incidence, full 3D vector scattering and possibly scattering
by dielectric and magnetic objects may be both feasible and beneficial.
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A Analysis of the Integral I,(O, ka)

The integral 1,(0, ka) (Eq.(42)) occurs in the ADBO treatment of scattering by a
conducting circular cylinder. Exact analytic evaluation of this integral appears not
to be possible. Here we attempt an approximate evaluation for ka >' 1.

The integrandof 1,(0, ka) behaves as (1/0')2 for 10'1 < I and so it is not integrable
in the usual sense. However, as discussed in detail by Maystre [3], integrals of this
type arise in the DBO technique as derivatives of principal value integrals and so
they are well-defined. Thus we write

1,(0, ka) = lirn i e- /k cos____ e 0' Ciac '+)I1 . (81)0 7rkaf- + f+ I ) I~ka' -,ao -

To render 1,(0, ka) in a form suitable for asymptotic analytic evaluation (and indeed
numerical evaluation) we use Bessel's equation to give

Ir, (0, ka) = - jjH(1(ka0') + (ka)2 H(1)(ka0')) e- ka c~s(6'+G)d0/ (82)

and then integrate by parts to find
(0, a)_if HlJ )(k e - ikacs(O'+O) cos(0' + 0)(1 - ika cos(0' + 0))dO'1,(0, ka) z I 7r .o '- a'" , 0' 0-(

- 2H~l)(7rka)ekac° 9 . (83)

The integrand of the remaining integral possesses a logarithmic singularity at 0' = 0
and so is integrable in the conventional sense. Asymptotic analysis of this integral
is most convenient through consideration of the integral K,(O, ka):

K, (0, ka) f[ H(o)(kaO) ka cos(e'+e) dO. (84)

Straightforward manipulation shows that 1,(0, ka) may be expressed in terms of

K, (0, ka) as follows:

1(0, ka) = 2H() (7rka)dacos e + ± 2KA (Oka) + ka K,(0, ka). (85)

When ka > 1 the function Ho'(kaO') is not slowly varying in the region -r _<

0' < 7r. However, asymptotic evaluation of K, (O, ka) can proceed by conventional
techniques using the following integral representation [13]:

H°')(kaO') =- if etkato'Ioshtdt" (86)

Substituting into (84) and interchanging the order of integration gives

K, (0, ka) = K(+)(0, ka) + K(-)(0, ka), (87)
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where

K+)(0, ka) = .- L-- e*(O',t)dO'dt (88)
(00(0

K-)(0,ka) = 1.--- ek~g("t)dOldt (89)
27r fi00 .J-r

g± (',t) = ±+'cosht- cos(0'+ 0). (90)

A proper asymptotic analysis of these double integrals must account for both sta-
tionary phase point and end-point contributions. (See, for example, Ref.14.) These
contributions are now considered in turn.

A.1 Stationary Phase Point Contributions

For evaluation of the stationary phase point contributions to I,(O, ka) it is conve-
nient to note that K, is even in 0 ; i.e. K,(0, ka) = K,,(-9, ka), and therefore that
the analysis can be confined to a treatment of the interval 0 < 0 < 7r. Consider first
the double integral K(+)(0, ka). For a stationary phase point at (0', t) = (0, to) the
following pair of simultaneous equations must be satisfied:

cosh to + sin(9 + 0) =0 (91)

0' sinhto = 0. (92)

A solution is possible only when to = 0 and sin(O + 0) = -1. It follows that there
is no stationary phase point contribution to K(+)(0, ka) in the interval 0 < 0 < 7r/2.
For 7r/2 < 0 < 7r, however, there is a stationary phase point in the integration
interval 0 < 0' < 7r at 0' = 37r/2 - 0. To evaluate its contribution, which we shall
call Kj(+)sP(9, ka), we introduce a new integration variable

0"= 0'-0=0' +0-3r/2 (93)

so that l o 9_° - / 2  ,k ag (e , ,) ,
K,(+)(0, ka) = i"-j L o e-, +(O",t)dOdt. (94)

Expanding the exponent in a Taylor series about the second order stationary phase
point at (0", t) = (0, 0) we find

g+(0",t) ,_ (37r/2 - 0)(l + t2/2) + 0"316 + 0"t 2/2. (95)

The t-integral can be performed using the standard result [14]

J0 ei'dt = ir/4". (96)
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Thus
eika(31r/2-0) 8-7r/2 eikae' /6

K(a>(o kci)7 -ir/4]do
K.(+)*,a _ C., -- for 7r/2 < 0 < 7r.

r a f-31/2 Vo + 37r/2 - 0

(97)
For ka > 1 the leading contribution to the remaining integral is of order (ka) - 1 /3.
This is the contribution due to the stationary phase point at 0" = 0:

I-7r/2 eika9'3/6 dO" ka>1 0_ eik.O.,/6 doll
0-31r/2 9" + 37r/2- o ~ 37r/2 - 9

27r - )/3 1Ai(0). (98)Va7r / 2 - 0 (

Here we have used an integral representation of the Airy function Ai(x) [14]. The
constant Ai(O) is approximately equal to 0.355. The effects of the finite integration
limits will be considered more precisely (i.e. without the stationary phase approxi-
mation to the integrand) later in this Appendix. We have found that

0 for 0 < 0 < (r/2
K(+)'P (0, k a) ::S (99)

7(81r ) 1/2 i- / e ika(
3 wI 2

-6)

A40 .... ,,for 7r/2< < 7r

A similar determination of the stationary phase point contribution to the integral
K,(-)(0, ka) is possible. Again a stationary phase point exists within the integration
interval only when r/2 < 9 < r. It is located at (',t) = (7r/2 - 0,0). The change
of variable 0" = 0' + 0 - 7r/2 gives

K(-)(0, ka) = I j /2 (100)
7r~ ~ Z~ JGrf.f-3ir/2e

Using (90), expanding about the stationary point at (0", ) = (0, 0) yields

g_ (",It) ; (9 - 7r/2)(1 + t2/2) - 0"/6 - 9"t 2/2. (101)

Carrying out the t-integration as before, we find

ka>1 eika( -7r/ 2) 27r ir / 0-7r/2 e-ikaO"3/6 dO"
K- ,,(o,ka) r ka e-3/2 v9 - r/2 - for lr/2 <9<W

(102)
This time, however, the function multiplying the exponential in the integrand is not
well-behaved near the stationary phase point 9" = 0 when 9 - 7r/2. Thus

.- /2 -ika8" /6 dO" ko)I 27 2 ) 1/3
-3r/2 9- 7r/2-O" 9 0/O 7/2 k Ai(O) (103)
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provided 0 0 7r/2. Hence

, 0 for 0 < 0 < 7r/2
K(-)'P(O, ka) ,:z

(jr,) 1/2 () 1/3 eir/4 Ai(O) eka(w/ 2 ) for 7r/2 < 0 <ir

(104)
and so from (87),(99) and (104) we deduce that

ka>Ico&#o u(I0I- 7/2)0(87r) 1 /2 (2 )/ 3 Ai(O)e - ' 1 4

eika(3r/ 2-1 1) eika(Ie- /2) (:?o +
V3-r /2 -2 101 +~ 0- 7r /2 (105

Substituting into (85), we find the following contribution to 1,(0, ka) arising from
stationary phase considerations:

Iu(,ka) U(I11 - 7r/ 2 ) ) A( - 1

e ika(31r/2- 1) + (eika(l-r)2)(3-7/2 - 0 +/ (10- - 7/2)1/1)o

A.2 End-Point Contributions

Asymptotic series for the end-point contributions to the 0' integrals of (88) and (89)
can be developed using successive integrations by parts:

+~ ikg 1) 1 \ It

e'0'~ 0 - zkag4.(7r, t) ika(g.(r, t)) 2 +

ikag+(O,t) '1 + +ka(0,t) 0(1 (107)

L hag'(0,t) gka((O,t)) +  10~ (kag 0,0 kg Ot) + 91 0
? k-agL-(0, t) ika(gL (0, t)) 2 + a f

i_ ---_ ) 1_+ 9g(-7r,t) + 0 .(108)

Here g' and g" respectively denote the first and second derivatives of g± with respect
to 0'. Hence the end-point contributions to K,(O, ka) (denoted by Ke(O, ka)) are
found to be
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K(0,ka)~ ik co e 0j0( O~i5f0K,'(0, ka) = rka (cosh t + sin0 + cosh t- sin 0 )

Cos 0jo 1 i
+i-pa 00 (cosht +sin 0)3 + (cosht - sin 0)3 d + 0 (a

ikacosO' 00 ( I + I e k o h tdt-;7k-arca { (cosh t + sin 0 cosh t - sin 0 ) k d

C o s 0 1 w a c s

- a 00 (cosht + sin 0)3 + (cosht - sin 0)3) ea dt

+ 0 ( " . (109)

The first term is due to the discontinuity of the derivative of the integrand of
K,,(O, ka) at 0' = 0. The first i-integration can be performed by application of
contour methods in the complex plane or by repeated use of the standard integral
[15] J0 dt

=o-=(0 < a < 7r). (110)
o cosh t + cos a sin a

We find
+ hi-i0 dt -,r (111)

- 0 ocosht+sin0 + osh t - sin 0 ) cos01L

Differentiating this result twice with respect to sin 0 gives
/ ( 1 1 ) r (3-2cos2 0) (12

( (cosh t + sin 0)3 + (coshI - sin 0)3) dt = l cos-o cos4 0 (112)

The second term of (109) is due to the truncation of the integrand at the end-points
0' = ±r. Provi.ed !sin 01 : I the t-integrals can be evaluated for ka > 1 by the
method of stationary phase. Expanding the integrands around the stationary phase
point at t = 0 in the usual way [141 we find

0 0 ( 1) i, k a c o h td t k a, ,c o s 8O &

Lo cosht+sin0 + cosh I sin 0 ek d

8ikair41 4(8 3 3cos2 0) +01 2) (113)8 e 
(1 3

kla cos2 0 87rka cos2 0 kkaJ

and L0 (cosh t + sin 0)3 + (cosht - sin 0)3 =kacoshtdt ka>1,cosB0O

S(os+ ( 2) (114)

(As before, (114) can also be obtained by differentiating (113) twice with respect
to sin0.) Substituting (111),(112),(113) and (114) into (109) gives the end-point
contribution to K,,(0, ka):
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ka>1 cos9oo 2e-kacos (3- 2cos2 0 (
- kajcosj 01 2ikacos3 0  kka )

(2 )3/2 e i  coC° i  /ka co r/4

-a 7r cOs 2

1'8 3CO2 )+ 4(4 -3 os290) +(1)2(115)87rka cos2O 0 kacosO  0 ka 15

We now substitute this result into (85) to find the end-point contributions to 1,,(9, ka)

(denoted Ie(0, ka)). After performing the necessary differentiations and much te-
dious algebra we find

I ,(0, ka) ka>1,cos0 o 21cos0V -kocos 9 ( + 2ka cos3 0)

+1'(0, ka) + 0 ()2 (116)

with

1', ka) (2)3/2 e3i r/4e iwka ikacos0= 0 k j ~ 2 ~(117)
7r ka7 2 COS 2 0

We have included the first term on the right side of (85) and have used the asymp-

totic form of the Hankel function to arrive at this result. This is appropriate since

,hat term originated from end-point contributions when integrating by parts. It is

of interest to note that the term I(0, ka), which is due to the truncation of the

integration interval at 0' = ±7r, can also be derived directly by considering I, - 1,:

I(0, ka) - 1,(O, ka) = (L + i ) 0a'i ikacos(9+6)dol. (118)

Using the asymptotic form of the Hankel function we find

(2 -3i/4 6tk.0' (eikacos(6'+O) + e-ika cos(O'-6) )dO,
II,(, ka) - 1,(O, ka) a- j (0/) 3/2 +

Cos 0*0O /2 3/2 -iir/4 e' 7rka e ika cos 0 1 /
- r 2 cos2  + (119)

Thus
I,(O,ka) I(,,(,ka)+I 7'(0, ka) (120)

as required.

Finally, then, we add the stationary phase and end-point contributions to deter-
mine the asymptotic approximation to I(O, ka):

I,,(0, ka) ;z I,-P(O, ka) + I'(O, ka). (121)

where I'P and I' are given by (106) and (116) respectively.
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B Asymptotic (ka> 1) Analysis of o(s,0)

Our starting point is the exact expression (32):

E f (1, ka)ei1°  (122)

with
0 = s/a (123)

and

f(1, ka) = H/')'(ka) (124)
H1g')(ka)

An asymptotic investigation is possible by means of a Watson transformation [11].
Using this technique the infinite sum is converted to a contour integral in the complex
plane (see Fig.11):

= f-(, ka) = J+ sin f(v, ka)dv. (125)
1=-0 2-C + - i

This step is easily checked by evaluating the residues of the (simple) poles of sin V1
which lie on the real axis. The assumption has been made that f(u, ka) has no
poles lying within the contour C+ + C. By choosing the positive constant o to be
arbitrarily small this is indeed the case - H( )(ka) = 0 has nu solution for real v.
Since [14]

H_')(ka) = C 7H(l)(ka) (126)

H('H'(ka) = e-" H(1'(ka), (127)

we deduce that
f(v .ka) = f(-v, ka). (128)

Hence -iki cosv(O+ ,d
T-, a .+ sin vr f(v, ka)d,. (129)

Following the analogous treatment of the field scattered by a perfectly conducting
cylinder due to plane wave incidence [11] we choose to write

cos v(O + 7r)=-ie-' ° sin v~r + e"' cos vO (130)

and examine the contributions of these terms separately. It remains to be seen
whether similar physical interpretations can be given to these contributions.

The integrand of (129) due to the first term on the right side of (130) has no
poles lying on the real axis. Thus the integration contour may be taken to be that
axis: k

-k I J -f(v,,ka)d. (131)
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As far as the author is aware the Fourier transform of f(v, ka) is not known. To
proceed further we thus revert to a uniform asymptotic expansion of f(v, ka). Ap-
plying known uniform asymptotic expansions of both H()'(ka) and H(')(kc) [16], it
follows thab

f (v, ka) = H(l)'(ka) k.>I,IwJ-ka -y(v, ka) ka
HP=(ka) ka + 2(V2(ka)2) (132)

where -y(v, ka) is defined in (19). The error is of order 0(1 1)L2 or O(ka) - 2. Inserting
the leadirg order term into (131) we obtain a contribution to 0'0)(s, 0) of

I1svl - ik H, ( s(1 3
yw.2'a - e'/y(v, ka)dv = 2 1

where the integral has been evaluated using (23) and (24). All dependence on ka
has disappeared and we have recovered ,P(s, 0). The next-to-leading order term of
(132) contributes

S - (ka)) dv. (134)

To evaluate this integral we need to know how to treat the poles at v = ±ka.
This problem is resolved by considering their origin. They have arisen because we
have used the approximation (132). However a closer examination of the zeroes
v,,(n = 1,2,...) of H(l)(ka) [17] reveals that (for Rc(v) > 0) they lie approximately
along a line oriented at 600 to the positive real axis:

V, = '-q + kCei ' 3  + 0(ka) - 1/ 3. (135)

The real constants Q, are related to zeroes of the Airy function:

Ai(-o,) = 0. (136)

As the a, are positive, Im(v,) > q. Thus the pole cf (134) at v = ka should be taken
to lie just above the real axis. Also, in view of (128), the pole at v = -ka is taken
to lie just below te real axis. Evaluation of (134) then follows by straightforward
application of Cauchy's integral formula:

-k 2  
C ' t u uSfa dv = .ilikt' (137)

(V2 4a -i,/

4r J-o (v _ (ka) 2 ) 4a

,om (131), (132), (133) and (137), then, i follows that

10(I)(s,0) = , (s,0) - i---k t k lsl + k 2 .0(ka) - 2. (138)
4a

The second term represents a first order curvature correction to ,l(s, 0)
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We now consider the contribution of the second term of (130):
- k e2 iw svOr

-- f(v, ka)dv. (139)
7ra c + (I - e 2ilr )

The integrand has simple poles at the zeroes of sin vir and at v = ±v,,, where
HQ)(ka) = 0. Referring to Fig.12, we see that

f e 2im r cos

I (1- e2
i) f(v, ka)dv = 0, (140)

where the contour C is given by C = C+ + C, + C2 + C3. Consider the contributions
of the arcs at infinity (C and C3 ). From (132),

f~v, ka a>i,lvl-oo -1V'1
f(v,ka) k ka " (141)

Since Im(v) > 0 and 101 < 7r, this behaviour is swamped by a decaying exponential
due to the rest of the integrand. It is therefore clear that the integrals along C, and
C3 vanish. Thus

2c()(s, 0) = k J e0-7-Cos V) f(v, ka)dv. (142)

Applying Cauchy's integral formula once again we find

-2ik e2 n'" ' cos v O H(')'(ka)
VC2)(s, a ,,= (=-e 2"",') -H L(ka)I (143)

where the sum is over the residues of the poles at v,. A Wronskian relation for
Hankel functions [17] enables us to write

HO)'(ka) 4i= &, (144)

8 H.,l)( ka) I VaH 2ka)- -H(,)(ka)l,=,,

James [14] gives the following useful asymptotic forms for Hankel functions:

H.1')(ka) '> 2(A e- /3 Ai {(v - ka) ka)/ e:
ll/} (145)

H( 2)(ka) "> 2(3 'Ai{(,-ka) (2 )113. (146)

From (145) we deduce

')(ka) 1& 2 eiA' (v - ka) (147)

35



Since, for large ka, vn " ka and

)- ka ) ()/ (148)

(see (135)), we find

H,,,(Ia) : 2 a e1 3 Ai(ane 'W/3) (149)

9 H(1)(ka)j.=J. 2 e 3Ai(-a,). (150)

Thus, from (144),

H(l)'(ka) k> (151)
o H X)ka[,=,,, 27re2t'"/3Ai'(a, e-'7r/)ai'(- ,n)"

Invoking the Wronskian relation [18]

-ie -ir/3
eir/3Ai(Xei/ 3)Ai(-x) + Ai(xe"i/ 3)Ai'(-X) 27r

and (136) this becomes
H(')'(ka) k.>1

n H k )I -1. (153)

Substituting into (143),

ka21 2ik e2wn" 'r cos vnO
c(2)(S,0) k a>1 ,i (1 - e2

COni) (154)

Since Im(v,1 ) > 0 this may be rewritten as

)k> _ ( + e2) m) -e)) .  (155)
n=I -=1

This form clearly suggests a creeping wave interpretation. Recalling that v,, . ka
for large ka we see that when 0 = 0 the phase factors correspond to waves which
have completely encircled the cylinder m times in both a clockwise and anticlockwise
sense.

Finally, then, from (138) and (155) it follows that

(So) = b,(l)(S0) + V( 2)(S,0)

ka>1 ik iklsl
V" t (s, 0) - 4a

ik 0
+- E E (ei&w(2Mw+0) + tL'n(2M,'-o)) (156)

n I m =1
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C Analysis of the Integral M.(O, ka)

The integral M,(O, ka) (Eq.(68)) occurs in the IDBO treatment of scattering by a
conducting circular cylinder. Exact analytic evaluation appears not to be possible.
Here we give an approximate evaluation valid when ka > 1. We write

M,(0, ka) = fl(+)(0, ka) + ,f(-)(0, ka), (157)

with

M,()(0,ka) = fekah+(0')d9' (158)

M, "-(0, ka) = e kah-( 9 ')dOl (159)

h:(0') = (.T~V) '- icos(O' + 0). (160)

Since Af,(0, ka) = M,,(-O, ka) we confine the analysis to the case 0 < 0 < 7r. Saddle
point and end-point contributions are now considered in turn.

C.1 Saddle Point Contributions
Consider first the integral M(+)(O, ka). For a saddle point at 0' = 0' (possibly

complex) we have

h+(0o) = i ( -) + isin(0, + ) =0. (161)

Since vo ,z ka for ka > 1 (see (66)) solutions to this equation occur in closely spaced
pairs in the complex 9' plane. It is not permissible to treat them separately. Instead,
following arguments similar to Jones [19], we expand about their mid-point 9' = 0']
defined by

it" = i ccs(0, + 0) = 0. (162)

For 0 < 0 < r/2 this equation has no solution in the integration interval 0 < 0' < 7r
close to a saddle point pair. For 7r/2 < 0 < r, however, there is an appropriate
solution at 01 = 37r/2 - 0. The associated saddle points P± are at

0' -: 0', + Vr -O a 2(163)

and the steepest descents path passes through P± with slopes tan-(r/6 T 7r/4).
Thus, for r/2 < 0 < r,

M! + )(0 , ka) > j ekafh+(O) + th (0W) + (ta6)h.'))di (164)

where t = 0'- 0' and the contour C = C- + C- + C1 + C + C+ . (See Fig.13.) The
contributions from the arcs at infinity (C2 and C+ ) vanish. The contributions from
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C; and C+ represent the effects of the truncation of the integrand of AfM+)(0, ka)
at 0' = ±r and will be considered more precisely (i.e. without the saddle point
approximation to the integrand) later in this Appendix. Deforming the steepest
descents contour C1 and using the substitution

IL 1/3

z = ( -) C iv/2 t (165)

yields the saddle point contribution A14+)sP(O, ka) to M(+)(0, ka):

,+)-P(9, ka) ka2z U(O - r/ 2 )(-i) ( i21 3 -

I + 1 } e(z/3+aoe-,"/
3 z)dz. (166)

The remaining integrals furnish a familiar representation of the Airy function [14].
We find (for 0 < 0 < 7r)

Sk+)'P(O, kaka 1 U(O - 7r/2) 2, T- Ai(()e"'3e (167)

An analogous treatment of the saddle point contributions to MA-(-, ka) is pos-
sible. The result (again for 0 < 0 < w) is given below:

MI _),s(O, ka) ka,> U(O - 7r/2) 27" (+) 1 'Aio°eioe°-/2" (168)

C.2 End-Point Contributions

Asymptotic series for the end-point contributions to the integral .1,(O, ka) can be
developed in the usual way (see Appendix A). We find

M,(0, ka) z v2- 2io ( - ik cos - ei r'eikco°sCO) (169)
LWI~V~ a1 ".* (v~o _(ka)2sin2 90)

The first term arises from the discontinuity in the derivative of the integrand at 9' = 0
while the second term is due to the truncation of the integrand at the end-points
0'=±-r.

Finally, then, we add the saddle point and end-point contributions to determine
the asymptotic approximation to M,(O, ka):

M.(0, ka) M (4+)-P(0, ka)+ A-) -P(0, ka) + Mf(0, ka), (170)

where M$+)'P, M(- )'P and MA are given by (167), (168) and (169) respectively.
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D Contribution of rc()(s,0) to the Cylinder Cur-
rent

Here we compute the DBO contributions to the cylinder current due to creeping
waves which traverse more than half the cylinder circumference. Such waves arc
accounted for by the term oc(2)(s, 0) of (57). We begin with the form (154):

oc()(S 0)ka l 2ik 0, e2iv"irCos vO
'S 2ik)eo Ln (171)a 2.. (1 - e~u' ,lw)

a n=1

From (38) we deduce that this generates a contribution j(2 )(0) to the current:

ka l . 0 e 2i tn r A
(0) ik (1 -n=1

where
N,(O, ka) = /(e ivnG' + -ivn')e-ikacOs(O'+O)dO' .  (173)

This integral bears many similarities to the integral M,r(O, ka) analysed in Appendix
C. An analogous asymptotic treatment is possible. We find

N(0, ka) _' N,(0, ka) + N,(0, ka), (174)

where the end-point and saddle point contributions are given respectively by

N'(0, ka) ka l 4v, sin V,7r eikacosO (175)
(Pv2 - (ka sin 0)2)

and
( 1\1l/3Ja 27r * A(ae + ew " (6-, 2 ) for 0 < 101 7,/2

27r (k) Ai(cneiw/3)(c'n(l-'n/} + ewn(3w/21e l ) for 7r/2 <c 10 _! 7r
(176)

The end-point term arises, as usual, because of the truncation of the integration
interval at 0' = ±7r and contributes

2keie'cs "1: Vn (177)
- 2keik °c°G (v[ - (ka sin 0)2)

to the current. As expected the magnitude of this contribution is negligibly small.
The contributions of the saddle point terms (176) to the cylinder current are

_ -ike1'/ 6  .) = (e ,n( 3 w/ 2 -)+e I.,(3r,/2+)) for 0 < 101 < 7r/2
n As'( -an)(1e...)

(178)
-ikei/ 6  1/3 (,n(3 /2 + 0)+,, n(7/2-jj)) for 7r/2 - 1015 < r,
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where we have used the relation

Ai(ae'i'3 )Ai'(-a ) = - (179)
27r

(This follows from (152) using Ai(-a,,) : 0.) Comparing with the asymptotic form
(49) of the exact current we see that we have generated the correct creeping wave
series in the illuminated region. Furthermore, by using the expansion

00

(1 - e2i "")- = E e2i'""' (180)
m=O

(valid since Im(vn) > 0) it is straightforward to confirm that the precise form of
all higher order (i.e. m > 0) creeping wave contributions to the current on the
shadowed side of the cylinder has been reproduced in (178). These terms represent
waves which have completely encircled the cylinder at least once.
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Fig.1. Electromagnetic scattering problem: infinite cylinder illuminated by plane wave.

1.

Fig.2. DBO problem: infinite cylinder illuminated by fictitious source.



0.H \

Fig.3. Plane wave scattering by an infinite circular cylinder.
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...... using I,,, and Af,, (eq.(73))
-- - using analytic approximation to 1, and Af, (eq.(72))
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Fig.lO(a). Circular cylinder surface current (ka = 5).
- ~IDBO solution (using I, and A,)
...... Exact solution

- - - - P0 solution
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Fig.10(b). Circular cylinder surface current (ka =1)

IDBO solution (using I,, and A!,)
...... Exact solution
- --- P0 solution
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Fig.12. Integration contour C of Eq.(140).
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Fig.13. Integration contour C of Eq.(164).
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